AD-A270

"——

4

" ]

neoneT NOACYMENTATION PAGE

-
——

]

Form Approved
OMB No 0704-018

AIOP 1S SSUMBTEd 70 AvETAQe  "NOUl DE’ Ce4D0M e NCIuAING ThE T Mg *0f rE

*DISTING ANA review:ng N8 (THECTICE Ot (MtOrMation  Sena (CMMeNts regaraing this Durden estimate or ar,
£AUCING (1S Duraen to Wasninglon Heagquarters Seryices. Directarate 1or n1o/mation DDErations ana ALDCrty 1275 ervercr
2 and to tre Qthice 2t Management ana Budqe? Paperaorx Reduction P-oiect (C704-2°88) wasn raton TC 20503

v OWIRG TP LCLICRS BTN T T R30S Gatd sourisy
2ner 308t

.....

825
I IIIIHIHI il

2. REPORT DATE
FINAL/01 AUG

3. REPORT TYPE.  AND DATES COVERED

90 TO 31 MAR 93

P. TITLE AND SUBTIILE

VLSI IMPLEMENTATION OF NEUROMORPHIC
LEARNING NETWORKS (U)

5. FUNDING NUMBERS

6. AUTHOR(S)

Dr Joshua Alspector

7013 /DARPA
F49620-90-C-0042

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Bellcor

290 West Mt Pleasant Ave
PO Box 486

Livingston NJ 07039-0486

AEOSR-1R-

8. PERFORMING ORGANIZATION
REPORT NUMBER

93 0754

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDR

AFOSR/NM
110 DUNCAN AVE, SUITE B115

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

F49620-92-C-0042

BOLLING AFB DC 20332-0001 o ELECT S
AR - ‘\99
R qe1)®

11. SUPPLEMENTARY NOTES :‘\L'j‘% -l

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

implementations. They have further shown how to search for
suitable for VLSI implementation using a genetic algorithm

implementations on the learning and generalization abilitie

they where they can or cannot classify perfectly.

The researchers have shown how to rigorously derive deterministic systems from
stochastic ones in the Boltzmann machine framework that they are using for their

new learning algorithms
approach. They have

analyzed the effect of precision constraints such as is found in hardware

s of neural networks.

They have studied the learning behavior of neural networks under conditions where

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

OF ABSTRACT
UVCLASSIFILD

19. SECURITY CLASSIFICATION

15. NUMI(?OF PAGES

16. PRICE CODE

20 LIMITATION QF ABSTRACT
SAR( SAME AS REPORT)

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2- 89)
Pves(.v_nl?d Oy ANSI Std 239-18




Miade b

COVER SHEET

VLSI Implementation of Neuromorphic Learning Networks
Contract Number F49620-90-C-0042, DEF
P.L - Joshua Alspector, Bellcore

Final Report e oRtal g
DTIC T3
4 Unannodi.cod [J
"F.i Justicalidn e
ARPA Order: 7013 P N
Program Code: 8D10,9D10 ot By _ e
Name of Contractor: Bellcore £ Disti ibution |
Effective Date of Contract: 1Jun90 —
Contract Expiration Date: 31May92 Avaudb_mty Codes
Amount of Contract Dollars: 370,389 Dist A"aé'p :Qigll or
Contract Number: F49620-90-C-0042 ;
Principal Investigator: Joshua Alspector Z \
and Phone Number: (201) 829-4342 \ ﬁ'

Program Manager: Steve Suddarth
and Phone Number: (202) 767-4931

Accecion For

Short Title of Work: VLSI Implementation of Neuromorphic Learning Networks

Sponsored by

Defense Advanced Research Projects Agency
DARPA Order No. 7013
Monitored by AFOSR Under Contract No. F49620-90-C-0042

The views and conclusions contained in this
document are those of the authors and should

not be interpreted as necessarily representing

the official policies er endorsements, either
expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government

-, - PN 32 4
. p AT
. E SR
g . . i LV 6

L{fzf“//

IWWWIWW




SUMMARY

VLSI Implementation of Neuromorphic Learning Networks
Contract Number F49620-90-C-0042, DEF
P.I. - Joshua Alspector, Bellcore

Final Report

1. Technical Problem

We wish to extend our study of neural-style learning in electronic systems to a usefully large
scale. Our long term goal is to define and develop an electronic learning system suitable for
solving real-world problems using learning by example.

2. Methodology

The study of electronic implementation issues will be extended to large scale systems using a
three pronged approach: A) Further development of learning algorithms and architectures
suitable for modular VLSI implementation. B) Functional simulation of large scale systems
using benchmark test problems. C) Design and fabrication of prototype chips suitabie for
inclusion in and testing of such systems.

3. Technical Results
3.1 Theory

We have shown how to rigorously derive deterministic systems from stochastic ones in the
Boltzmann machine framework that we are using for our implementations. We have further
shown how to search for new learning algorithms suitable for VLSI implementation using a
genetic algorithm approach. We have analyzed the effect of precision constraints such as we find
in hardware implementations on the learning and generalization abilities of neural networks. We
have studied the learning behavior of neural networks under conditions where they can or cannot
classify perfectly. We have defined and shown how to use a measure to determine when either a
stochastic or deterministic system has settled and will use this measure in our electronic system.
For further details, see Section 1 of the final report.

3.2 Simulation

Our results show that the Boltzmann machine learning we use in our VLSI implementation gives
approximately the same performance as the more popular back-propagation algorithm used in
most simulations. Furthermore, both algorithms scale up to large size similarly. We have
started a study of perturbative learning for implementable feed-forward neural networks. For
further details, see Section 2 of the final report.




3.3 Implementation

We have designed, fabricated, and tested an experimental prototype of a large learning
microchip containing 32 neurons and 496 bidirectional synapses. The chip settles either
stochastically (using a novel electronic noise generator) or deterministically (using variable gain
neuron amplifiers). Learning experiments on a single chip microsystem show results similar to
what we obtained in simulation. The chip is capable of running at 100,000 patterus per second
(100 million connections per second per chip) and of being cascaded to form systems of larger
size. We have completed the design and fabrication of a synapse-only chip to enhance
cascadability. For further details, see Section 3 of the final report.

4. Further Research

We would eventually like to interface our simulator to a multi-chip learning system and add
other tunctions such a< mean-field content-addressable memory.

We would like to fully realize the potential of our learning microchips by incorporating the chip
set into a large multi-chip, VME based learning microsystem.

We would like to find a suitable means of learning in analog VLSI for feed-forward and dynamic
neural networks.

We would like to apply these techniques to challenging, real-time problems such as image
classification.

5. Special Comment on Integrated Circuit Technology for Neural Networks

Significant progress in the implementation of large, multi-chip, electronic learning systems is
hampered by the state of current VLSI technology. An integrated circuit technology which can
create small (about 1 square micron) learning synapses is highly desirable. Some modification
of the current analog floating gate technology might be suitable. Furthermore, multi-chip
systems would be most easily achieved if a suitable wafer-scale integration technology were
available. Neural networks are a natural candidate for using such a technology.
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VLSI Implementation of Neuromorphic Learning Networks
Contract Number F49620-90-C-0042, DEF
P.L. - Joshua Alspector, Bellcore

Final Report

1. Neural Network Theory
1.1 Accomplishments

Several authors have recently proposed deterministic learning algorithms as approximations to
learning in stochastic systems. We have studied!!! two deterministic learning algorithms, and
showed how they may be viewed as different ways of performing the approximation to the fully
stochastic system, which in this case was the Boltzmann machine. We focused in particular on
the representation of probability distributions in the deterministic systems and related them to
the true distributions. Specifically, if one takes the Boltzmann machine probability distribution
and uses a saddle point approximation, one gets the usual mean-field equations. However, if one
uses the mean-field approximation that the correlations factorize, one obtains the algorithm of
Pineda.

From the point of view of hardware applications it would be very useful to devise learning
algorithms which require only a limited precision, such as using only binary synaptic weights
and neural states. One way of doing this is to take existing learning aigorithms and discretize the
weights during learning. We have taken an alternative approach of using genetic algorithms to
search the space of all possible algorithms.[? In the case of a single layer perceptron with binary
weights, we have shown that we get a well known algorithm devised by other means, namely,
the directed drift algorithm of Venkatesh. We are now irying to extend these ideas to the multi-
layered case, about which much less is known.

We have studied learning and generalization in single-layer feedforward networks, whose
weights are constrained to take on a discrete set of values.!’! As far as we know this is the first
analytic study of the effect of weight precision (important for hardware implemenatations) on
the learning and generalization ability of neural networks. Our analytic results are obtained
within the replica approach, which is verified through Monte Carlo simulations. It is shown that,
depending on the architecture of the network and on the source of the training examples, three
qualitatively different behaviors emerge. This distinction, which is manifested through the
dependence of the training and generalization errors on the size of the training set, suggests a
possible way to determine the suitability of the architecture to the learning task. We conjecture
that this distinction is relevant to the more interesting case of multi-layered networks.
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We have calculated the training and generalization errors of three well known learning
algorithms using methods of statistical physics.[“] We focus in particular on inconsistent
algorithms which are unable to perfectly classify the training examples, and show that the
asymptotic behavior of these algorithms is different from the case of consistent algorithms. Our
results are in agreement with bounds derived by computational learning theorists. We also
demonstrate that one of the algorithms studied performs almost indistinguishably from the Bayes
learning algorithm, while having the advantage of being implementable in a single-layer
network. This last point is important if one is to systematically evaluate the performance of
learning systems, and compare them to standard statistical approaches.

In feedback neural networks, especially for static pattern learning, a reliable method of settling is
required. Simulated annealing has been used but it is often difficult to determine how to set the
annealing schedule. Often the specific heat is used as a measure of when to slow down the
annealing process, but this is difficult to measure. We have proposed another measure,
volatility, 3! which is easy to measure and related to the Edwards-Anderson model in spin-glass
physics. We have been studying the usefulness of this measure in simulations of dynamics in
Boltzmann and mean-field networks, and have shown how to use it to speed up learning. We
have established a theoretical basis for the volatility measure to substitute for the specific heat in
annealing. Simulations have verified the validity of this measure and shown how to use it to
speed up annealing and learning. This quantity is far easier to measure than specific heat
because only the knowledge of neural states and not the weights are needed. This seems to hold
promise for being an easy to measure way of controlling the noise and gain in our neural
network chips.

2. Neural Network Simulation
2.1 Accomplishments

We presented a paper'! at the Neural Information Processing Systems (NIPS) conference in
November, 1990. The paper shows, by simulation of benchmark test problems such as NETtalk,
that network learning algorithms of the type we are implementing (Boltzmann and mean-field)
work as well as the far more commonly used back-propagation technique. Since some form of
feedback connections are required so that the teacher signal on the output neurons can modify
weights during supervised learning, we argue that full time feedback, as opposed to the part-time
feedback of back-propagation, is more plausible to investigate, even for static pattern learning
where the dynamics of recurrent connections are not utilized fully. Relaxation methods are
needed for learning static patterns with full-time feedback connections. Feedback network
learning techniques have not achieved wide popularity because of the still greater computational
efficiency of back-propagation. We show by simulation that relaxation networks of the kind we
are implementing in VLSI are capable of learning large problems just like back-propagation
networks. The availability of hardware learning should give a boost to these methods. Our
benchmark problems are parity, replication, and NETtalk.

We presented a paperm at the Neural Information Processing Systems (NIPS) conference in
December, 1992. This described a parallel, stochastic method for learning in feed-forward
networks without doing back-propagation of errors. The work focused on a perturbation
technique that measures, not calculates, the gradient. Since the technique uses the actual
network as a measuring device, errors in modeling neuron activation and synaptic weights do not




cause errors in gradient descent. Simulations showed that the method learns and scales well.
We used the benchmark problems of parity, replication, contiguity, and hamming coding to
check scaling properties. It appears that we can exploit the parallel nature in an implementation
to achieve a speedup over computer simulation. This is a component of a current proposal to
ARPA for VLSI implementation of learning for use in image classifiers.

3. Neural Network Implementation
3.1 Accomplishments

We have designed, fabricated, and performed functional and learning tests on an experimentai
prototype of a 32 neuron learning microchip.®! This 160,000 transistor chip also contains 496
bi-directional synapses and a 32 channel uncorrelated noise generator. We have measured the
transfer functions of the analog neuron and the analog portions of the synapse and demonstrated
variable gain. We have verified the functionality of the digital portion of the synapse. We have
also shown that the noise generator works and demonstrated its effect on the neuron transfer
function. We have built a set of test boards for performing learning using an experimental
prototype single chip. We have integrated the chip, boards, data generators and analyzers, and
an X-windows hased interface into a learning system based on the chip.

More importantly, we have demonstrated that the chip learns. This work follows up on the
previous year’s simulation paper by performing Boltzmann and mean-field experiments in actual
learning hardware rather than just simulations. The results obtained are similar to those obtained
in software. Measurements show that the potential learning speed of the hardware is 100,000
patterns per second roughly independent of the problem size. If all the synapses on the chip
were utilized, this would imply a learning speed of 100 million connection updates per second
(CUPS) per chip. This is roughly 10,000 times faster than Sparc 2 simulations of Boltzmann
learning.

We have completed design and fabrication of an experimental prototype of a 1024 bi-directional
synapse chip to enhance cascadability of the above neuron-containing chip.!) '% This chip has
been tested for functionality and appears to work well. The two chips together can form the
building blocks for a much larger neural system.

We presented a paper!!! at the 1992 IEEE Neural Networks for Signal Processing Workshop at
Elsinore, Denmark, September, 1992. This showed how our Boltzmann and mean-field
prototype chip can be used for content addressable memory with a capacity far larger than
ordinary Hopfield memory by using mean-field settling and hidden units. Results show good
agreement between simulations and the actual chip. A possible use of this technique would be
for vector quantization or other coding.

3.2 Other Deliverables

Video available (delivered to B. Yoon, Seattle, July 11, 1991); Joshua Alspector and Anthony
Jayakumar, "Bellcore Neural Learning System - The Video"; A learning neural microchip which
settles using both electronic noise and variable gain neurons is described. The functions of the
various components are demonstrated on oscilloscopes. An integrated software-hardware
system which can learn by example is demonstrated. An example learning task performed by
the chip is displayed in an X-windows based software system. Videotaped on location in Room
' 2E-377, Bellcore, Morristown, NJ, June 24-25, 1991. Copyright Bellcore 1991.
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Microchip available (delivered to B. Yoon, Seattle, July 11, 1991)

Assorted view-graphs including both the neuron-containing and synapse-only learning chips are
available.
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